资源名称:
【数据技术课堂】机器学习实战三期
资源简介:
120+小时超丰富内容体系大课,完整涵盖“经典机器学习+集成学习+时序模型+超参数优化+特征工程+模型融合+企业级实战案例”【七大模块】,零基础直达中高级算法岗位要求,Kaggle&就业&晋升一步到位!
课程目录:
【数据技术课堂】机器学习实战三期
- LESSON 0 前言与导学(上).mp4
- LESSON 0 前言与导学(下).mp4
- LESSON 1 机器学习基本概念与建模流程(上).mp4
- LESSON 1 机器学习基本概念与建模流程(下).mp4
- LESSON 10.1 开篇:超参数优化与枚举网.mp4
- LESSON 10.2 随机网格搜索(上).mp4
- LESSON 10.2 随机网格搜索(下).mp4
- LESSON 10.3 Halving网格搜索(上).mp4
- LESSON 10.3 Halving网格搜索(下).mp4
- LESSON 10.4 贝叶斯优化的基本流程.mp4
- LESSON 10.5 BayesOpt vs HyperOpt vs Optuna.mp4
- LESSON 10.6 基于BayesOpt实现高斯过程gp.mp4
- LESSON 10.7 基于HyperOpt实现TPE优化.mp4
- LESSON 10.8 基于Optuna实现多种优化.mp4
- LESSON 11.1 Boosting的基本思想与基本元.mp4
- LESSON 11.2 AdaBoost的参数(上):弱评.mp4
- LESSON 11.3 AdaBoost的参数(下):实践.mp4
- LESSON 11.4 原理进阶:AdaBoost算法流程.mp4
- LESSON 12.1 梯度提升树的基本思想与实.mp4
- LESSON 12.2 迭代过程中的参数(1):GBDT.mp4
- LESSON 12.3 迭代过程中的参数(2):GBDT.mp4
- LESSON 12.4 弱评估器结构参数:弗里德.mp4
- LESSON 12.5 梯度提升树的提前停止.mp4
- LESSON 12.6 袋外数据与其他参数.mp4
- LESSON 12.7 梯度提升树的参数空间与TP.mp4
- LESSON 12.8 原理进阶 (1):GBDT数学流程.mp4
- LESSON 12.9 原理进阶 (2):拟合伪残差的.mp4
- LESSON 13.1.1 XGBoost的基本思想.mp4
- LESSON 13.1.2 实现XGBoost回归:sklearnAPI详.mp4
- LESSON 13.1.3 实现XGBoost回归:xgb原生代.mp4
- LESSON 13.1.4 实现XGBoost分类:目标函数.mp4
- LESSON 13.2.1 基本迭代过程中的参数.mp4
- LESSON 13.2.2 目标函数及其相关参数.mp4
- LESSON 13.2.3 三种弱评估器与DART树详.mp4
- LESSON 13.2.4 弱评估器的分枝:结构分.mp4
- LESSON 13.2.5 控制复杂度:弱评估器的.mp4
- LESSON 13.2.6 XGBoost中的必要功能性参.mp4
- LESSON 13.3.1 XGBoost的参数空间.mp4
- LESSON 13.3.2 XGBoost基于TPE的调参.mp4
- LESSON 13.4.1 XGBoost的基本数学流程.mp4
- LESSON 13.4.2 化简XGBoost的目标函数.mp4
- LESSON 13.4.3 求解XGBoost的损失函数.mp4
- LESSON 2 矩阵运算基础、矩阵求导与最小二乘法1.mp4
- LESSON 2 矩阵运算基础、矩阵求导与最小二乘法2.mp4
- LESSON 2 矩阵运算基础、矩阵求导与最小二乘法3.mp4
- LESSON 3 线性回归的手动实现.mp4
- LESSON 3.1 变量相关性基础理论.mp4
- LESSON 3.2 数据生成器与Python模块编写.mp4
- LESSON 3.3 线性回归手动实现与模型局限.mp4
- LESSON 3.4 机器学习模型可信度理论与交叉验证基础.mp4
- LESSON 4.1 逻辑回归模型构建与多分类学习方法(上).mp4
- LESSON 4.1 逻辑回归模型构建与多分类学习方法(下).mp4
- LESSON 4.2 逻辑回归参数估计.mp4
- LESSON 4.3 梯度下降基本原理与手动实现(上).mp4
- LESSON 4.3 梯度下降基本原理与手动实现(下).mp4
- LESSON 4.4 随机梯度下降与小批量梯度下降(上).mp4
- LESSON 4.4 随机梯度下降与小批量梯度下降(下).mp4
- LESSON 4.5 梯度下降优化基础:数据归一化与学习率调度(上).mp4
- LESSON 4.5 梯度下降优化基础:数据归一化与学习率调度(下).mp4
- LESSON 4.6 逻辑回归的手动实现方法(上).mp4
- LESSON 4.6 逻辑回归的手动实现方法(下).mp4
- LESSON 5.1 分类模型决策边界.mp4
- LESSON 5.2 混淆矩阵与F1-Score.mp4
- LESSON 5.3 ROC-AUC的计算方法、基本原理.mp4
- LESSON 6.1Scikit-Learn快速入门.mp4
- LESSON 6.2 Scikit-Learn常用方法速通.mp4
- LESSON 6.3 (上)正则化、过拟合抑制.mp4
- LESSON 6.3(下) Scikit-Learn逻辑回归参.mp4
- LESSON 6.4 机器学习调参入门.mp4
- LESSON 6.5(上)机器学习调参基础理.mp4
- LESSON 6.5(下)Scikit-Learn中网格搜索.mp4
- LESSON 6.6.1多分类评估指标的macro与we.mp4
- LESSON 6.6.2 GridSearchCV的进阶使用方.mp4
- LESSON 7.1(上)无监督学习与K-Means基.mp4
- LESSON 7.1(下)K-Means聚类的Scikit-Lear.mp4
- LESSON 7.2 Mini Batch K-Means与DBSCAN聚类.mp4
- LESSON 8.1 决策树模型的核心思想与建.mp4
- LESSON 8.2(上)CART分类树的建模流.mp4
- LESSON 8.2(下)sklearn中CART分类树的参.mp4
- LESSON 8.3【加餐】ID3和C4.5的基本原理.mp4
- LESSON 8.4 CART回归树的建模流程与skle.mp4
- LESSON 9.1 集成算法开篇:Bagging方法的.mp4
- LESSON 9.2 随机森林回归器的实现.mp4
- LESSON 9.3 随机森林回归器的参数.mp4
- LESSON 9.4 集成算法的参数空间与网格.mp4
- LESSON 9.5 随机森林在巨量数据上的增.mp4
- LESSON 9.6 Bagging及随机森林6大面试热.mp4
- 【实战技巧】Part 4.0第四部分导学.mp4
- 【实战技巧】Part 4.1 海量特征衍生与 (下).mp4
- 【实战技巧】Part 4.1 海量特征衍生与筛选(上).mp4
- 【实战技巧】Part 4.2 网格搜索超参数 (上).mp4
- 【实战技巧】Part 4.2 网格搜索超参数(下).mp4
- 【特征工程】Part 1.3 字段类型转化与.mp4
- 【特征工程】Part 1.4 异常值检测.mp4
- 【特征工程】Part 1.5 相关性分析.mp4
- 【特征工程】Part 2.1数据重编码:Or.mp4
- 【特征工程】Part 2.2 数据重编码:O.mp4
- 【特征工程】Part 2.3 转化器流水线:.mp4
- 【特征工程】Part 2.4 特征变换:数据.mp4
- 【特征工程】Part 2.5 连续变量分箱:.mp4
- 【特征工程】Part 2.6 连续变量分箱:.mp4
- 【特征工程】Part 3.1.1 特征衍生方法.mp4
- 【特征工程】Part 3.1.2 基于业务的新.mp4
- 【特征工程】Part 3.1.3 基于业务的服.mp4
- 【特征工程】Part 3.1.4 基于数据探索.mp4
- 【特征工程】Part 3.1.5 借助IV值检验.mp4
- 【特征工程】Part 3.1.6 基于数据探索.mp4
- 【特征工程】Part 3.2.1 单变量特征衍.mp4
- 【特征工程】Part 3.2.10 多变量多项式.mp4
- 【特征工程】Part 3.2.11 时序特征分析.mp4
- 【特征工程】Part 3.2.12 时序特征衍生.mp4
- 【特征工程】Part 3.2.13 时序特征衍生.mp4
- 【特征工程】Part 3.2.14 时序特征衍生.mp4
- 【特征工程】Part 3.2.15 时间序列分析.mp4
- 【特征工程】Part 3.2.16 词向量化与T.mp4
- 【特征工程】Part 3.2.17 NLP特征衍生方.mp4
- 【特征工程】Part 3.2.18 NLP特征衍生函.mp4
- 【特征工程】Part 3.2.19 交叉组合与多.mp4
- 【特征工程】Part 3.2.2 四则运算衍生.mp4
- 【特征工程】Part 3.2.20 分组统计高阶.mp4
- 【特征工程】Part 3.2.21 目标编码.mp4
- 【特征工程】Part 3.2.22 关键特征衍生.mp4
- 【特征工程】Part 3.2.23特征衍生实战.mp4
- 【特征工程】Part 3.2.24 特征衍生实战.mp4
- 【特征工程】Part 3.2.25 特征衍生实战.mp4
- 【特征工程】Part 3.2.26 特征衍生实战.mp4
- 【特征工程】Part 3.2.3 分组统计特征.mp4
- 【特征工程】Part 3.2.4 多项式特征衍.mp4
- 【特征工程】Part 3.2.5 统计演变特.mp4
- 【特征工程】Part 3.2.6 多变量交叉组.mp4
- 【特征工程】Part 3.2.7 多变量分组统.mp4
- 【特征工程】Part 3.2.8 多变量分组统.mp4
- 【特征工程】Part 3.2.9 多变量多项式.mp4
- 【特征筛选】Part 3.3.0 特征筛选技术.mp4
- 【特征筛选】Part 3.3.1 缺失值过滤与.mp4
- 【特征筛选】Part 3.3.10 互信息法特征.mp4
- 【特征筛选】Part 3.3.11 feature_importan.mp4
- 【特征筛选】Part 3.3.12 RFE筛选与RFEC.mp4
- 【特征筛选】Part 3.3.13 SFS方法与SFM方.mp4
- 【特征筛选】Part 3.3.14 特征筛选方法.mp4
- 【特征筛选】Part 3.3.2 评分函数与特.mp4
- 【特征筛选】Part 3.3.3 假设检验基本.mp4
- 【特征筛选】Part 3.3.4 卡方检验与特.mp4
- 【特征筛选】Part 3.3.5 方差分析与特.mp4
- 【特征筛选】Part 3.3.6 线性相关性的.mp4
- 【特征筛选】Part 3.3.7 离散变量之间.mp4
- 【特征筛选】Part 3.3.8 连续变量与离.mp4
- 【特征筛选】Part 3.3.9 连续变量之间.mp4
- 【电信用户流失】Part 1.1 业务背景与.mp4
- 【电信用户流失】Part 1.2 数据字段解.mp4
- 【电信用户流失】Part 1.6 数据探索性.mp4
- 【电信用户流失】Part 2.10 逻辑回归.mp4
- 【电信用户流失】Part 2.11 决策树模.mp4
- 【电信用户流失】Part 2.12 决策树模.mp4
- 【电信用户流失】Part 2.7 逻辑回归机.mp4
资源下载
下载价格49.90 自学币
终身VIP免费
请先登录本站资料仅供个人学习和研究使用 若本帖作者内容侵犯了原著者的合法权益请提供相应证明材料本站审核通过后将即予以处理
评论0